
A Fault Tolerant, Peer-To-Peer

Replication Network

Radu Potop, Otto Iovanici
Department of Science and Letters

“Petru Maior” University of Tg. Mures
Tg. Mures, Romania

radu.potop@wooptoo.com, ottoiovanici@gmail.com

Genge Bela, Haller Piroska
Department of Electrical Engineering

“Petru Maior” University of Tg. Mures
Tg. Mures, Romania

bgenge@engineering.upm.ro, phaller@engineering.upm.ro

Abstract — We propose a fault tolerant, peer-to-peer replication
network for synchronizing files across multiple hosts. The
proposed topology is constructed by applying existing
technologies and tools to ensure that files are kept synchronized
even after subsequent modifications. One of its main advantages
lies in the fact that there is no central authority to coordinate the
process, hosts are connected in a peer-to-peer fashion, thus
avoiding a single point of failure. Our proposal is intended for
use in networks of personal computers where a small number of
hosts have to be synchronized.

Keywords: replication, peer-to-peer, synchronization.

I. INTRODUCTION

A peer-to-peer network is a distributed network composed
of participants that make a portion of their resources (e.g.
processing power, disk storage or network bandwidth)
available to other network participants, without the need for
central coordination [1]. Peers are both suppliers and
consumers of resources, in contrast to the traditional client-
server model where only servers supply and clients consume.

Peer-to-peer networks are typically used for connecting
nodes via largely ad–hoc connections. Sharing content files
containing audio, video, data or anything in digital format is
very common, and real time data, such as telephony traffic,
can also be transmitted using peer-to-peer technology [2].

A replication network basically manages replicas of the
same set of files across multiple computers. These can be of
various kinds, from simple file sharing to mirroring content
and providing it to users based on their geographical location
(e.g. Content Delivery Networks), replicating content with the
intend of backing-up or, replicating content for immediate
availability of data across multiple computers.

In this paper we propose such a fault tolerant, peer-to-peer
replication network for synchronizing files across multiple
hosts. The proposed topology is constructed by applying
existing technologies and tools to ensure that files are kept
synchronized even after subsequent modifications. One of its
main advantages lies in the fact that there is no central
authority to coordinate the process, hosts are connected in a
peer-to-peer fashion, thus avoiding a single point of failure.
Our proposal is intended for use in network of personal

computers where a small number of hosts have to be
synchronized.

The paper is structured as follows. In Section II we
present the requirements for constructing a fault tolerant peer-
to-peer replication network and we provide a presentation of
our proposal. We continue with Section III where we provide
several usage scenarios, illustrating the applicability of our
proposal. In Section IV we evaluate the performance of the
proposed replication network and we conclude with Section V.

II. REQUIREMENTS AND DEPLOYMENT

A. Network Requirements

Implementing a fault-tolerant, peer-to-peer (Fig. 1)
replication network is not a trivial task if we just look at the
number of existing proposal found in the literature [3], [4].
Peer-to-peer replication involves many aspects that should be
considered.

First of all, system administrators must decide if the
architecture should involve a centralized (Fig. 2) approach.
This way, the system defines several peers and one master
node against which the synchronization is actually made. Such
an architecture can have several disadvantages:

• There must be a central, node up and running that
must handle all synchronization requests, which can
be a single point of failure for the entire network;

Fig. 1: Peer-to-peer
Network

P

P

P

P

P

P

Fig. 2: Centralized
Network

S

C
C

C C

• Each node must synchronize with the master,
operation that involves serious bandwidth
consumptions for larger files.

One of the main issues and challenges that administrators
must deal with is the overall bandwidth consumption of the
synchronization process. By using a large amount of
bandwidth, the network can increase the delay of packages
received by end users that can also lead to an unusable
network during synchronization.

Another issue with which system administrators are
confronted with is the security of the system and the overhead
introduced by cryptographic operations. When setting up
security requirements, administrators should not only look at
the security requirements of data transmitted over the network,
but they should also establish key management techniques, as
these can be one of the main reasons of security failures.

One of the aspects that should also be taken into
consideration is the use of existing, well-established
technologies and tools for deploying such a network. With the
large amount of solutions that can be adopted, system
administrators should filter those solutions that do not involve
using well-established tools. Such an approach can limit and
possibly eliminate system failure due to programming errors.

To sum-up some of the major requirements that must be
addressed by system administrators are the following:

• Adopt a decentralized architecture;
• Deploy only low bandwidth consumption algorithms;
• Ensure secure distribution of cryptographic keys and

use only standardized security protocols for data
transfers;

• Use only standardized and well-established
software/tools to deploy the solution.

B. Deployment

1) Applications
In deploying the proposed network we have used several

well-established software and tools such as: OpenSSH,
Unison, Dcron, VirtualBox and Netem, all of these running on
top of a Linux distribution. We are going to present each one
of them briefly.

OpenSSH is a free/open-source Secure Shell (SSH)
implementation [5] developed by the creators of the OpenBSD
operating system. SSH was primarily designed to replace
Telnet and other insecure remote shells that send sensitive data
such as passwords in a plain text format. SSH ensures several
security properties such as authentication, session key
exchange, confidentiality and integrity and it is one of the
most well-established security protocols because of its
flexibility and reduced deployment issues. SSH is the network
protocol that allows a secure data exchange between two peers
in our proposal.

Unison is a file synchronization tool. It is used for
synchronizing files between two directories, either on one
computer, or between a computer and another storage device
(e.g. another computer, or a removable disc) [6]. It runs on
Unix-like operating systems (including Linux, Mac OS X, and

Solaris), as well as on Windows. By using the rsync algorithm
[7], Unison transfers only the fragments of a files that have
changed, thus saving bandwidth. Unison can also detect
conflicts where a file has been modified on two sources, and
displays these to the user. Unison can deal with modifications
to both versions of the directory structure, without the
overhead of version control.

Dcron is a time-based job scheduler in Unix-like
operating systems. The name Cron comes from the word
chronograph (i.e. a time-piece). Cron enables users to schedule
jobs (e.g. commands, shell scripts) to run automatically at a
certain time or date. It is commonly used to automate system
maintenance or administration, though its general purpose
nature means that it can be used for other purposes, such as
connecting to the Internet and downloading email. Cron is
driven by crontab, a configuration file that specifies shell
commands to run periodically on a given schedule.

In our proposal cron is used to periodically synchronize
data across computers. Periodical synchronization makes on-
demand synchronization faster, since a part of the data is
already transferred.

VirtualBox is a virtualization software that provides a
software-based emulation of the x86 architecture [8]. Using
virtualization it runs a guest (or virtual) operating system as a
process on the host (or physical) operating system. There are a
lot of supported operating systems for both the guest and the
host, ranging from Windows, to Linux distributions, and to
Solaris.

In the case of our proposal, the virtualization software
was used to run a number of guest Linux systems, that are
interconnected by a network. These systems will exchange
data between them in a peer-to-peer fashion, forming our
replication network. Therefore, we could say that the
replication network is sandboxed in a virtual environment.

Netem is a Linux kernel module. Netem provides network
emulation functionality for testing protocols by emulating
wide area networks [9]. The current version emulates variable
delay, loss, duplication and re-ordering. Netem is controlled
by the command line tool tc which is part of the iproute2
package of tools.

2)Scripts
A few Bash scripts accompany the applications and glue

them together, making the replication network functional.
Bash is the shell for the GNU operating system. It can be run
on most Unix-like operating systems. It is the default shell on
most systems built on top of the Linux kernel as well as on
Mac OS X.

The main script reads a list of IP addressed from a file.
These are the addresses of the computers that will be
synchronized. For each IP address, Unison is ran and data
from the local computer is synchronized with data from the
remote computer, in a two-way fashion. Using this technique
we will have a fully connected network that grants as soon as
possible data availability on all the computers.

Secondary scripts handle tasks such as limiting the
network throughtput and adding packet loss on each machine's

startup, to simulate a wide area network. This is done using
the tc tools.

Lastly, there are test scripts that generate files with fixed
length and random content using Linux's built-in PRNG [10].
These files serve for the experiments done in chapter IV.

The sources of the scripts can be found at:
http://bitbucket.org/wooptoo/p2prn/ as a mercurial repository.

III. USAGE SCENARIOS

In this section we present several scenarios in which the
proposed topology can be used to ensure file synchronization
across multiple peers. The proposed network is designed to
synchronize a folder on multiple computers belonging to the
same user but not all at once. The files will become redundant,
meaning that they will be present on every peer that is used.

A. The first scenario

In this first scenario we consider the situation where there
is a user that owns a laptop computer (i.e. C1), a home desktop
computer (i.e. C2) and a computer at his workplace (C3). Each
computer will represent a peer in our system. The goal of this
implementation is to provide the user a synchronized set of
files (i.e. F1, F2, F3, F4) on any of the hosts he is working on
(i.e. on C1, C2, C3). We consider that the user will work on
the files from one computer at a time.

The initial setting is the following:
• C1 has F1, F2, F3;
• C2 has F4;
• C3 has no user files.
After the synchronization process is ended, F1, F2, F3 and

F4 are available on each host C1, C2, C3.
In the first step, as shown in Fig. 3, the user is working on

his home hosts (i.e. C1, C2) where he’s using F4 on his
desktop computer (i.e. C2). The laptop computer C1 is
powered ON when the Cron job will execute the Bash script
and the folder synchronization will start. When the job is

finished, C1 and C2 will contain the same F1, F2, F3, F4 files.
The user then powers down C2 and goes to work.

In the next step, illustrated in Fig. 4, the user arrives at the
workplace where the synchronization between C1 and C3 will
result in C3 having all 4 files (i.e. F1, F2, F3, F4). The user
then creates a presentation (i.e. file F5) on C3. Through the
synchronization process, F5 will be transferred on his laptop
computer C1, that he is going to use at a client meeting.

Once the user arrives home, after C1 and C2 are
synchronized, he can edit file F5 in the comfort provided by
the desktop computer C2, also shown in Fig. 5.

B. The Second Scenario

In the second scenario, we consider a situation where the
user has four hosts to be synchronized. The hosts are: C1, C2,
C3 and C4 and we consider the set of files F1, F2, F3, F4. The
goal now is to synchronize files on all four machines over the
network. Initially, files are distributed at hosts such that each
host stores a different file than other hosts. At the end of the
synchronization process, all four files are stored on every host.

Fig. 3: Synchronization at step 1 –
scenario 1

F1,F2
F3

F4

C1 C2

C3

Fig. 4: Synchronization at step 2 –
scenario 1

F1,F2
F3,F4

F1,F2
F3,F4

C1 C2

C3

Fig. 5: Synchronization at step 3 –
scenario 1

F1,F2
F3,F4

F5

F1,F2
F3,F4

F1,F2
F3,F4

F5

C1 C2

C3

In the first step, illustrated in Fig. 6, host C1 is
synchronized with hosts C2, C3 and C4 in this particular
order. The result is the following:

• C1 – has F1, F2, F3, F4;
• C2 – has F1, F2;
• C3 – has F1, F2, F3;
• C4 – has F1, F2, F3;

In the second step, illustrated in Fig. 7, host C2 has to
synchronize with hosts C1, C3, C4 in this particular order.
This will ensure that every host has the same file content once
the synchronization process is finished.

IV. EXPERIMENTAL RESULTS

A. Preliminaries

Before measuring the actual performance of our proposal,
we have to limit the bandwidth of each peer to simulate a
consumer-grade Internet connection. An ideal network setting
would be similar to the one illustrated in Fig. 8. For such a

setting the measured throughput varies around 30Mbits/s and
there is almost no packet loss or network instability.

Using Netem we can simulate a more realistic network,
where packets can be losed randomly and we can limit the
overall throughput to 3Mbits/s, which is closer to consumer-
grade connections. The result is shown in Fig. 9. For this case,
we configured a delay of 10ms between packets, and a loss of
3%. The throughput has been altered significantly as can be
seen from Fig. 9.

B. First Scenario

In the first scenario we used four hosts and we identified
five different cases, described in the remaining of this sub-
section. The results are shown in Fig. 10.

1) Case 1
We use only two hosts where we send file F1 (10MiB)

from host C1 to host C2. This takes 56 seconds over the
network conditions mentioned above and illustrated in Fig. 7.

2) Case 2
To the two host mentioned in the previous case we add

two additional hosts C3 and C4, and we also add file F2
(10MiB) to host C1. We start synchronizing from host C2.
Host C2 already has file F1, so it only fetches file F2 from

Fig. 6: Synchronization at step 1 –
scenario 2

F1 F2

F3 F4

C1 C2

C3 C4

Fig. 7: Synchronization at step 2 –
scenario 2

F1,F2
F3,F4

F1,F2

F1,F2
F3

F1,F2
F3,F4

C1 C2

C3 C4

Fig. 8: Ideal network throughput

Fig. 9: A realistic network throughput

Fig. 10: First scenario – up to 4 hosts

Case 2 Case 3

Case 4

Case 5

host C1. Then, files F1 and F2 are transferred to both host C3
and C4. This sums to a traffic of 50MiB that takes 4 minutes
and 17 seconds to complete.

3) Case 3
In this case we add file F3 (10MiB) to host C1, file F4

(10MiB) to host C3, and we start synchronizing from host C3.
File F3 is transferred from host C1 to host C3, and file F4 is
transferred from host C3 to host C1. After this, both F3 and F4
files are transferred from host C3 to hosts C2 and C4, totaling
60MiB of traffic. This takes 4 minutes 32 seconds to
complete.

4) Case 4
At this point every host (C1, C2, C3, C4) will have all the

files (i.e. F1, F2, F3 and F4). In the fourth case we
synchronize host C4 with the other three hosts. This will result
in almost no traffic, since the files already exist on all hosts.
This takes 25 seconds. Up until case 4 the total traffic was
160MiB, that required about 10 minutes to complete.

5) Case 5
In this last case for the first test, we append 5MiB to file

F1 from host C1, and we also append 5MiB to file F4 from
host C4. File F1 will be sent from host C1 to hosts C2, C3 and
C4, and file F4 will be sent from host C4 to host C1. We can
see that the fifth case took a lot less time and traffic to
complete. This happens because the delta algorithm was used.
Even though we appended (i.e. we modified) 5MiB to file F1,
the synchronization process did not transfer the entire file
across the network, it transferred only differences. This is
because hosts C2, C3 and C4 already had the initial 10MiB of
the file. The total transferred volume in case 5 is 20MiB,
completed in 1 minute and 45 seconds.

From this first test we can already see that transferring
large amounts of data between the hosts can be inefficient, not
because of the system’s architecture, but mostly because of the
network (i.e. bandwidth) limitations. However, our system
seems more efficient for sending small files or (small)
modifications to existing files.

C. Second Scenario

In the second scenario we used six hosts, and 10 files
(denoted by F1, F2, F3, …, F10). For this scenario, we
identified 3 different cases that are detailed next.

1) Case 1
The files, from F1 to F10 are only on host C1 and need to

be transferred to the other hosts. The total traffic required for
synchronizing all 10 hosts is calculated as follows. Each file
has a size of 10MiB, with each set of 10 files that must be
transferred to five hosts. This results in 500MiB of traffic that
is completed in 32 minutes and 47 seconds.

This case takes quite a lot of time, making the transfer
inconvenient in some cases, such as an urgent need of files on
remote hosts.

2) Case 2
In this case we append 1MiB to each file according to the

following setting:
• C2 – files F1, F2;
• C3 – files F3, F4;
• C4 – files F5, F6;
• C5 – files F7, F8;
• C6 – files F9, F10.
The synchronization is started from host C1. For this

case the synchronization is completed in 3 minutes and 12
seconds with 20MiB transferred.

3) Case 3
All hosts will be synchronized from host C5. Since each

host already has all the files, no transfer will take place –
Unison simply checks that all files are the same. This takes 1
minute and 33 seconds to complete.

If we compare case 3 from the second scenario (1m33s)
and case 4 from the first scenario (25s), we can see that time is
also wasted on establishing connections between hosts. Both
cases do not make any transfer, they just check that files exist.

One of the advantages of our proposal is that it is able to
propagate small changes of files in a reasonable amount of
time. Since the system is intended for home users, Case 2
from the second scenario is possibly the most realistic one,
since users are unlikely to change a large amount of files over
a short time period.

D. Third Scenario

In the third scenario we define only one case. We
consider six hosts, with host C1 having 20 files, each of
500KiB, and the other hosts having no files. So 10MiB are
transferred from host C1 to each other hosts, resulting a total
of 50MiB of traffic, completing in 3 minutes and 59 seconds.
The conclusion from this last scenario is that the number of
files does not affect the time of the transfer. We can also
conclude that for this scenario, the time needed to synchronize
many smaller files is mostly equal to the time needed to
synchronize a small number of larger files.

E. Experiments Conclusions

As a conclusion of the experiments we can say that the
presented system is ideal for transferring a small volume of
data at a time (about 50MiB) for the transfer to take place in a
timely manner (under 4 minutes). These results can be
confirmed from the first scenario – case 5 or the third
scenario. These files could be mostly office documents that
need to be consistent across multiple peers, or small batches of
data that synchronize periodically.

Larger amounts of data can be transferred but with a
significant increase in synchronization time. This happens
mostly because of bandwidth limitations and packet loss
(simulated with Netem), as can be seen from the second
scenario – case 1. To overcome this issue we periodically
synchronize files between peers by running the script from
Cron. In these circumstances when an express synchronization
is requested by the user it will take place as fast as possible.

By comparing case 3 from the second scenario and case
4 from the first scenario we can see that adding more peers to
the network does increase synchronization time. Even though
most of the synchronization time is spent on transferring files,
some overhead exists.

V. CONCLUSIONS

We proposed a fault tolerant peer-to-peer replication
network that enables an efficient file synchronization over
multiple host. Our proposal does not depend on a host that can
become a single point of failure, but instead uses a completely
decentralized architecture where each host is synchronized
against all other hosts in the network.

The network is deployed using only well-established,
standard technologies such as SSH, Unison or Cron. This does
not only ensure a rapid deployment, but provides a bug-free
and a stable system from the very beginning.

Our proposal can provide an easy to use method for
synchronizing a “home” directory. It is scalable to a
reasonable number of hosts a user may have or want to work
with, while most overhead is eliminated because the
synchronization is made periodically due to the Cron daemon.

The security of the proposal is ensured by using the
standard SSH security protocol that ensures a session key
exchange, host authentication, data confidentiality, and
integrity. In case a host is compromised, its public key can be
simply removed from the list of trusted keys, thus ensuring
that no synchronization requests are accepted from this
particular host.

REFERENCES

[1] Rüdiger Schollmeier, A Definition of Peer-to-Peer Networking for the
Classification of Peer-to-Peer Architectures and Applications,
Proceedings of the First International Conference on Peer-to-Peer
Computing, IEEE (2002).

[2] Peer-to-peer, http://en.wikipedia.org/wiki/Peer-to-peer

[3] Dan Teodosiu, Nikolaj Bjørner, Yuri Gurevich, Mark Manasse, Joe
Porkka, Optimizing File Replication over Limited-Bandwidth Networks
using Remote Differential Compression, Technical Report MSR-TR-
2006-157, Microsoft Research, 2006.

[4] Tao Wu and David Starobinski, A Comparative Analysis of Server
Selection in Content Replication Networks, IEEE/ACM Transactions on
Networking, Vol. 16, Issue 6, pp. 1461 – 1474, 2008.

[5] RFC 4251, http://www.ietf.org/rfc/rfc4251.txt

[6] Unison manual, http://www.cis.upenn.edu/~bcpierce/unison/

[7] The rsync algorithm,
http://samba.anu.edu.au/rsync/tech_report/node2.html

[8] The VirtualBox architecture,
http://www.virtualbox.org/wiki/VirtualBox_architecture

[9] Netem – Emulating wide area network delays,
http://www.linuxfoundation.org/collaborate/workgroups/networking/net
em

[10] Pseudorandom number generator,
http://en.wikipedia.org/wiki/Pseudorandom_number_generator

